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Abstract When a nonequilibrium growing interface in the presence of a wall is considered
a nonequilibrium wetting transition may take place. This transition can be studied through
Langevin equations or discrete growth models. In the first case, the Kardar-Parisi-Zhang
equation, which defines a very robust universality class for nonequilibrium moving inter-
faces, with a soft-wall potential is considered. While in the second, microscopic models,
in the corresponding universality class, with evaporation and deposition of particles in the
presence of hard-wall are studied. Equilibrium wetting is related to a particular case of the
problem, it corresponds to the Edwards-Wilkinson equation with a potential in the contin-
uum approach or to the fulfillment of detailed balance in the microscopic models. In this
review we present the analytical and numerical methods used to investigate the problem and
the very rich behavior that is observed with them.

Keywords Wetting transitions · Surface growth models · Kardar-Parisi-Zhang equation

1 Introduction

Wetting [1] is well exemplified by considering a liquid droplet on a substrate. Depending
on the physical properties of the system, determining the shape of the droplet, the substrate
will be more or less wet. More specifically, the contact angle � (see Fig. 1) is related to the
surface tensions through Young’s equation,

cos� = (σS,V − σS,L)/σL,V , (1)

where σS,V , σS,L and σL,V are the surface tensions of the substrate-vapor, substrate-liquid
and liquid-vapor surfaces, respectively. Total wetting happens if � = 0, and 0 < � < π

corresponds to partial wetting.
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Fig. 1 Two drops on a substrate.
The left one has a contact angle
� > π/2 and wets less the
substrate, in comparison to the
right one with � < π/2

Cahn [2] observed that by approaching the critical temperature Tc , for T < Tc , the liquid-
vapor surface tension σL,V goes to zero faster than the difference (σS,V − σS,L), therefore,
at a temperature TW < Tc a wetting transition should take place. In this wetting transition,
� > 0 for T < TW and � = 0 for T ≥ TW . This observation introduced the notion that
wetting could be viewed as a type of critical phenomena.

More generally, a wetting transition occurs in a thermodynamic system constituted of a
bulk phase A and a substrate that attracts a second coexisting phase B . Depending on the
control parameters, like e.g. temperature and chemical potential, the system will be in the
moving phase or in the bound phase. At the wetting transition a macroscopic layer of the
absorbed phase B is formed and phases A and B coexist. In the bound phase only the phase
A is stable and the AB interface stays pinned to the wall, whereas in the moving phase the
AB interface grows and only phase B is stable.

Abraham [3] introduced a two-dimensional Ising model that could be solved exactly and
displayed the same kind of transition predicted by Cahn [2]; it was also shown that in the
solid on solid (SOS) limit the model still exhibited a wetting transition. The advantage of
taking this limit is that it simplifies the calculations and with it several exact results can be
obtained using the transfer matrix method [4–6].

The SOS model, defined on an one-dimensional lattice with periodic boundary conditions
and size L, has the following Hamiltonian,

H = J

L∑

i=1

|hi+1 − hi | +
L∑

i=1

V (hi), (2)

where hi ≥ 0 is a discrete random variable representing height, J is a positive coupling,
V (hi) is a potential accounting for the interaction between the wall (hi = 0) and the ab-
sorbed phase and no overhangs are allowed. The region x > hi corresponds to the phase A

and the region x < hi to the coexisting phase B , therefore, the height gives the position of
the AB interface. By varying the temperature this model presents a wetting transition at a
temperature TW , at which the average height of the interface diverges.

On a coarse-grained level equilibrium wetting transitions can be studied using the Hamil-
tonian [7]

H =
∫

ddx
{

σ

2
|∇h(x)|2 + V [h(x)]

}
, (3)

where x is a continuous variable giving the position in the d-dimensional substrate. The
height h(x) gives the position of the interface and the potential V [h(x)] accounts for the
presence of the substrate and a possible interaction between it and the interface. In order to
consider the dynamics of wetting, Lipowsky [8] introduced the following Langevin equa-
tion,

∂h(x, t)

∂t
= a + σ∇2h(x, t) − δV [h(x, t)]

δh(x, t)
+ ζ(x, t), (4)
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where the deterministic part of it originates from −δH [h(x)]/δh(x), with H given by (3),
and ζ(x, t) is a Gaussian noise with zero mean and variance given by

〈ζ(x, t)ζ(x′, t ′)〉 = Dδ(x − x′)d−1δ(t − t ′). (5)

Equation (4) is the Edwards-Wilkinson (EW) equation [9], which is known to describe the
motion of an equilibrium interface with velocity a (see [10, 11]), with an extra term: the
potential V [h(x)].

The Kardar-Parisi-Zahng (KPZ) [12] equation differs from the EW equation by the pres-
ence of the nonlinear term λ(∇h)2. The basic difference of an interface described by the
KPZ equation (when compared to one described by the EW equation) is that the velocity of
the interface depends on the local interface slope ∇h(x). The non-linear term comes from
an expansion of the velocity with respect to the local interface slope, and it can be shown
that higher order terms in the expansion are irrelevant under a renormalization group trans-
formation [10, 11]. That is why the KPZ equation defines a robust universality class for
nonequilibrium moving interfaces.

Since the paper of Cahn [2], equilibrium wetting has been intensively studied, theoreti-
cally and experimentally (see [7, 13, 14] for reviews). Differently, nonequilibrium wetting
is in its very beginning and experimental studies on it still lack. One way to study it is to add
the nonlinear term of the KPZ equation λ(∇h)2 to (4), such equation was considered for the
first time by Tu et al. [15]. Hinrichsen et al. [16] and Muñoz and Hwa [17] introduced mi-
croscopic models in the KPZ universality class in the presence of a hard wall, showing that
nonequilibrium wetting could also be studied with them. A considerable amount of work on
nonequilibrium wetting has already emerged and our aim is to review it here.

In this article we present a detailed description of nonequilibrium wetting, reviewing the
very rich phenomenology that is obtained from numerical and analytical methods used to
study the Langevin equation and the microscopic models. Two reviews on the subject, more
focused on the Langevin equation approach, are [18, 19], and there is some overlap be-
tween them and the present one. Nevertheless, in the account we make here many aspects of
nonequilibrium wetting are presented in more detail, mainly when it comes to microscopic
models. We also obtain a few new results that will be pointed out when they come.

The review is organized in the following way. In the next section we define the Langevin
equations and the microscopic models to be analyzed. Moreover, the quantities of interest
and the exponents associated with them are defined. Section 3 contains exact calculations,
that are possible for microscopic models when detailed balance is fulfilled. In Sect. 4 Monte
Carlo simulations of microscopic models and numerical integration of the Langevin equa-
tions are presented. The content of Sect. 5 is mean field approximations for microscopic
models. The case of a substrate with more than one dimension is treated in Sect. 6, where
mean field approximations for the continuum model, naive power-counting and some renor-
malization group arguments are used. We end with final remarks in Sect. 7.

2 Definition of the Problem

2.1 Continuum Model

The Langevin equation we are going to consider, describing the motion of an interface in
the presence of a wall, is the bounded KPZ (bKPZ) equation, given by [15]

∂h(x, t)

∂t
= a − d

dh
V (h) + σ∇2h(x, t) + λ(∇h(x, t))2 + ζ(x, t). (6)
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This is (4) added with the nonlinear term λ(∇h(x, t))2. In contrast to the unbound KPZ
interface, the sign of λ is of great importance, because, as we will see, it leads to different
universality classes. We call them bKPZ+ and bKPZ− universality classes.

The potential V (h) has to account for the presence of a substrate and the interaction
between the absorbed phase and the substrate. A natural way to consider the presence of a
substrate is to forbid negative heights with a hard-wall potential, that is given by

V (h) =
{

0 if h >= 0,

∞ if h < 0.
(7)

The problem with this potential is that it is not suitable for calculations (analytical and
numerical). A potential that overcomes this problem and is used in the study of equilibrium
and nonequilibrium wetting with short range interactions is [7]

V (h) = b

s
exp(−sh) + c

2s
exp(−2sh), (8)

where s ≥ 1 controls the hardness of the wall, b is a control parameter that in equilibrium
and near the transition is proportional to |T − TW | and c ≥ 0. If b > 0 the wall is repulsive
and the term exp(−2sh) is irrelevant, with b < 0 and c > 0 we have an attractive wall. The
order parameter of the wetting transition is n = e−h. In the bound phase the mean height is
finite and the interface stays pinned to the substrate, therefore n > 0. In the moving phase
the mean height grows linearly with time and n = 0. As we will see, in the microscopic
models a hard-wall is considered, and the critical behavior of them is the same as the critical
behavior of the bKPZ equation with the soft-wall potential (8).

It turns out that the bKPZ equation (6), with V (h) given by (8), can be transformed into a
Langevin equation with multiplicative noise. This is done with the Cole-Hopf transformation
n = e−h, which, in the case that the sign of the nonlinear term is negative, gives the following
equation for the order parameter [20],

∂n(x, t)

∂t
= − d

dn
V (n) + σ∇2n(x, t) + n(x, t)ζ(x, t), (9)

where without loss of generality we set λ = −σ and chose to interpret the Langevin equation
in the Stratonovich sense (interpreting it in the Ito sense would just produce a shift in the
factor multiplying the linear term [21]). The potential, as a function of n, is now given by

V (n) = a

2
n2 + b

2 + s
n2+s + c

2 + 2s
n2+2s , (10)

where the linear term −an appearing in (9) is now incorporated in the potential. This equa-
tion was introduced by Grinstein et al. [20], later it was pointed out that it was equivalent
to the bKPZ equation [15]. The universality class it defines is called multiplicative noise 1
(MN1), obviously MN1 and bKPZ− are the same universality classes. The MN1 equation
is also related to the synchronization transition in coupled map lattices [22], therefore, there
is a relation between this transition and the wetting transition. We do not discuss this point
here, references about it are [18, 23, 24].

By applying the same transformation to the bKPZ+ case (now with λ = σ ), the resulting
equation is

∂n(x, t)

∂t
= − d

dn
V (n) + σ∇2n(x, t) − 2σ

(∇n(x, t))2

n(x, t)
+ n(x, t)ζ(x, t). (11)
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This equation is known as the multiplicative noise 2 (MN2) equation. The MN1 (9) and MN2
(11) equations will be very important in the course of this review, because they are more
convenient in several situations. For example, integrating them numerically is simpler than
integrating the bKPZ equation directly, which suffers by numerical instability problems [25].

With this map between the bKPZ equations and the MN equations it is easy to see what
are the effects of considering an upper wall instead of a lower wall. An upper wall is im-
plemented with the potential V (h) = b

s
exp(sh) + c

2s
exp(2sh) in (6), in this case a negative

(positive) λ corresponds to the case of a lower wall with positive (negative) λ. This can be
verified by performing the Cole-Hopf transformation, but now with n = eh, in the bKPZ
equation with an upper wall. The result is: with a positive (negative) λ the obtained equation
is MN1 (MN2). In this review we always consider a lower wall, also in the microscopic
models.

Before going to the definition of the microscopic models we point out that, although the
bKPZ equation is defined for d spatial dimensions, in most of this review we will restrict
to the case d = 1, the exception being Sect. 6. For this reason, the microscopic models are
defined, in the following, on an one-dimensional substrate.

2.2 Microscopic Models

2.2.1 Restricted Solid on Solid Model

The model for nonequilibrium wetting described in what follows was introduced by Hin-
richsen et al. [16]. It is a growth process taking place in an one-dimensional discrete lattice
with periodic boundary conditions and size L. To each site i a random variable hi is at-
tached, it can take the values hi = 0,1,2,3, . . . , and is interpreted as the interface height.
Nearest neighbors respect the restricted solid on solid (RSOS) constraint, i.e.,

|hi − hi±1| ≤ 1, (12)

which introduces an effective surface tension. The interface evolves in time by random-
sequential updates in the following way. A site i of the lattice is randomly chosen and the
processes that may occur are (see Fig. 2):

(a) deposition of a particle (hi → hi + 1) with rate q ,
(b) evaporation of a particle (hi → hi − 1) at the edges of plateaus with rate r ,
(c) evaporation of a particle (hi → hi − 1) from the middle of a plateau with rate p.

Fig. 2 Transition rates for RSOSW model (left) and example of an interface configuration with transitions
that may take place
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Fig. 3 Phase diagram of the
RSOSW model. At p = 0 the
transition is in the direct
percolation (DP) universality
class; for 0 < p < 1 it is in the
bKPZ− universality class; for
p = 1, where detailed balance is
satisfied, it is in the bEW
universality class; for p > 1 in
the bKPZ+ universality class

If the final configuration would violate the RSOS condition or would lead to a negative
height, then it is not carried out. After L attempts a Monte Carlo step is completed, and time
is increased by one. The initial condition is a flat interface at height zero and we, without
loosing generality, set r = 1. A hard wall is present because evaporation events at the bottom
layer (hi = 0) are forbidden. Since this model respects the RSOS condition and there is a
hard-wall, we name it RSOSW model.

The wetting transition can be explained as follows. Consider a free interface (negative
heights are allowed). It may propagate, depending on the deposition and evaporation rates,
in the directions of increasing or decreasing height. In the phase where the velocity of the
interface v is positive (increasing height direction), the presence of the wall makes no differ-
ence: after some transient the interface will propagate with the same velocity as if the wall
was not present. In contrast, when the rates are such that v < 0, the wall changes the sce-
nario completely because the interface stays bounded to the wall. Therefore, by forbidding
negative heights, a wetting transition from a bound to a moving phase takes place, and the
phase transition line qc(p) corresponds to a free interface with v = 0. The phase diagram of
the RSOSW model is displayed in Fig. 3.

This model was generalized by Hinrichsen et al. [26], in order to include an attractive
interaction between the substrate and the interface. This is done by considering a different
deposition rate q0 < q at zero height. Because q0 is smaller than q the detachment of the
interface from the substrate becomes harder and, therefore, this change in the dynamical
rules simulates an attractive force between the substrate and the interface. As we will show,
using microscopic models and the bKPZ equation, the presence of an attractive potential
leads to new physics.

The sign of the factor multiplying the nonlinear term of the KPZ equation can be deter-
mined in a microscopic model. Considering an initially tilted interface, it is related to how
the interface velocity varies with the tilt [10]. In Fig. 3 the dotted line where λ = 0 is dis-
played, above (below) it λ < 0 (λ > 0). This shows that for 0 < p < 1 the phase transition is
in the bKPZ−, for p = 1 in the bEW and for p > 1 in the bKPZ+ universality class. p = 0
is a particular case that will be addressed in Sect. 4.
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Fig. 4 Example of an interface configuration of the SSW model with some transitions that can occur. The
horizontal line indicates the height of the moving wall h̄. On the right is the interface after the substrate
moves, h̄ → h̄ + 1

2.2.2 Single-step Model

Another microscopic realization of nonequilibrium wetting is the so-called single-step
model with a wall (SSW), introduced by Ginelli et al. [27]. Here we use a more specific
version of it, studied in [28, 29].

In the SSW model, the difference of height between two neighbors is restricted through
the condition

|hi − hi+1| = 1. (13)

As in the previous model, it is defined on an one-dimensional lattice of size L and with
periodic boundary conditions. It evolves random-sequentially by the following rules:

(a) deposition of a particle (hi → hi + 2) with probability p,
(b) evaporation of a particle (hi → hi − 2) with probability 1 − p,

at a chosen site i occur if the configuration after the move is carried out does not violate the
single-step constraint. The initial condition is hi = 1 (hi = 0) if i is odd (even). In the case
of the SSW model λ is proportional to 1/2 − p, therefore for p = 1/2 we have the bEW
case and for p > 1/2 (p < 1/2) the bKPZ− (bKPZ+) case. The incorporation of a wall,
in comparison to the previous case, is a bit more complicated, it is done in the following
way. For the SSW model, it is not possible to vary the velocity of the interface keeping λ

fixed. This happens because, differently from the RSOSW model, there is just one control
parameter, namely p. Fortunately, the velocity of the interface, in the long time limit, for the
single-step model (free interface case) is known exactly; it is given by

vL = (p − 1/2)(1 + 1/L). (14)

Therefore, in order to study nonequilibrium wetting the system is tuned to criticality by
considering a wall that moves with velocity vL, given by (14). This is done by forbidding
evaporation events below the substrate height h̄(t).

In this paper we focus on the cases p = 1/2, p = 1 and p = 0 which are in the bEW,
bKPZ− and bKPZ+ universality classes, respectively. For p = 1/2, since vL = 0, the height
of the wall is h̄(t) = 0. At p = 1, during a simulation, after every 	t = 2(1 − 1/L) we
increment the substrate height by one unity, h̄ → h̄ + 1. This means that all sites below the
new h̄ have their height increased and evaporation events at the new h̄ are forbidden. For the
bKPZ+ case (p = 0) after every 	t = 2(1 − 1/L) we have h̄ → h̄ − 1.

The SSW model is particularly useful to obtain critical exponents numerically, since
in this case one knows the critical point exactly. On the other hand the advantage of the
RSOSW model is that it presents a richer behavior. The SSW model is also important in the
study of mean field approximations (see Sect. 5).
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2.3 Observables and Related Exponents

Finally, we define the physical quantities, that we are going to consider in this review, and
the exponents associated with them. They are defined in the context of the RSOSW model
and will be generalized to the continuum model at the end of this section. The generalization
to any other microscopic model is straightforward.

2.3.1 Scaling Exponents

A key quantity in what follows is the mean height of the interface, defined by

〈h〉 =
〈
L−1

L∑

i=1

hi

〉
, (15)

where 〈 〉 means the ensemble average. Another observable of great importance is the inter-
face width, given by

w2 =
〈
L−1

L∑

i=1

h2
i

〉
− 〈h〉2. (16)

Considering an infinite system, if the interface width grows with time and does not reach
a stationary value in the long time limit, the interface is called rough. Otherwise, if w satu-
rates after some transient it is smooth. In the one-dimensional case, the wetting transition is
a roughening transition, the interface is smooth for q < qc and rough for q ≥ qc . Obviously,
if the system is finite, even when the interface is rough, w saturates. When one wants to
verify if an interface is rough or smooth, by doing simulations in finite systems, one has
to consider different sizes and see how the saturation value ws(L) varies with L. If ws(L)

grows with L, than the interface is rough; if it tends to a saturation value independent of L,
then the interface is smooth. This is shown in Fig. 5.

The KPZ universality class describes the self-affine properties of the roughening interface
under scale transformations. The scaling exponents are defined by the relations [10, 11]

w(t) ∼ tγ , ws ∼ Lα, ts ∼ Lz, (17)

Fig. 5 Interface width w, for the RSOSW model, as a function of time in the bound phase (left) and in the
moving phase (right) for L = 64,128,256. In the bound phase q = 0.9 and in the moving phase q = 3.0,
where p = 1.0. One can see that the saturation value of w tends to a constant in the bound phase (smooth
interface) and grows with L in the moving phase (rough interface)
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where ts is the time at which the interface width saturates. γ is known as the growth expo-
nent, α is the roughness exponent and z the dynamical exponent. They are not all indepen-
dent, but related because of the Family-Vicsek scaling relation [30]

w(t,L) = Lαf (tL−z), (18)

where f (x) is a scaling function. From this last relation it follows that z = α/β . In one
dimension the scaling exponents of the EW universality class are α = 1/2, β = 1/4 and
z = 2; while for the KPZ universality class they are α = 1/2, β = 1/3 and z = 3/2 [10, 11].

We stress that the definition of the scaling exponents does not depend on the presence of
the wall, they are related to the invariance of scale of w. However, the definition of critical
exponents just make sense with a wall. As we will show, by introducing a wall, only one
new independent critical exponent arises, the others can be determined by scaling relations
and the values of the scaling exponents.

2.3.2 Critical Exponents

The order parameter of the wetting transition is the density of sites at zero height, i.e.,

ρ0 =
〈
L−1

L∑

i=1

δhi ,0

〉
. (19)

In the bound phase ρ0 > 0, while in the moving phase, where the interface detaches from
the wall, ρ0 = 0. Another order parameter for the transition is the velocity of the interface,
which is zero at the bound phase and non-zero at the moving phase.

Figure 6 shows the typical time evolution of ρ0 above, below and at criticality. For q < qc

the order parameter reaches a constant positive value in the stationary state. At the critical
point, it goes to zero with a power-law behavior and for q > qc it vanishes exponentially.
The exponent θ is defined at the critical line by the relation

ρ0(t) ∼ t−θ . (20)

Fig. 6 On the left ρ0(t) below (q = 0.97), at (q = 1.0) and above (q = 1.01) criticality, with L = 512 and
p = 1.0. Note that at the critical point ρ0(t) decays algebraically, above it goes to zero exponentially and
below it saturates. On the right, typical bounded and moving interfaces are showed for different times. For
q = 0.97 it stays bounded to the wall and for q = 1.01 it advances
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Near and below criticality we have

ρs
0 ∼ (qc − q)β, (21)

where ρs
0 is the saturation value of the order parameter. As discussed above the mean height

is finite in the bound phase and diverges at criticality. The exponent associated with this
divergence is defined by

〈h〉 ∼ (qc − q)−ζ , (22)

where the above relation is valid near and below criticality. In one dimension the interface
width is also finite for q < qc and diverges at the critical point. Since it has the same dimen-
sion as 〈h〉, we expect it to diverge with the same exponent ζ . In this sense, when dealing
with an one-dimensional substrate, we consider the above definition also valid for w. When
analytical calculations are possible, we calculate both quantities and show that, indeed, they
have the same critical behavior.

At the wetting transition, like the interface width, the mean height follows the relation
〈h〉 ∼ tγ . In the moving phase 〈h〉 grows linearly with time. Therefore, the interface velocity
goes to zero as the critical point is approached from above. The critical exponent βv is
defined by

v ∼ (q − qc)
βv , (23)

where the above relation is valid above and near criticality.
The spatial correlation length ξ⊥ diverges near the critical point as,

ξ⊥ ∼ (qc − q)−ν⊥ . (24)

The same happens with the temporal correlation length ξ‖,

ξ‖ ∼ (qc − q)−ν‖ . (25)

The saturation of the interface width w in a finite system, for a rough interface, happens
when ξ⊥ becomes of the same order of the system size L, at the time ts proportional to ξ‖.
All this lead to

ξ‖ ∼ ξ z
⊥, (26)

which gives the following scaling relation,

z = ν‖/ν⊥. (27)

Another scaling relation is

θ = β/ν‖, (28)

it comes from (20), (21) and (25). Since the spatial correlation length is of the order of the
system size when w saturates, ws ∼ Lα can be written as ws ∼ ξα

⊥. Hence, with (22) and
(24), we have

ζ = ν⊥α. (29)

We are considering the case q0 = q where there is no attraction between the wall and
the absorbed particles. For the bKPZ equation, where the order parameter is n = e−h, we
have a non-attractive wall if b assumes some positive fixed value (in this case the term
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exp(−2sh) is irrelevant and one can set c = 0). The control parameter a is analogous to q

in the RSOSW model and, therefore, relations (20) and (21) become: n(t) ∼ t−θ (valid at
a = ac) and ns ∼ (ac − a)β , where ns is the saturation value.

2.3.3 Attractive Substrate

If there is an attractive force between the substrate and the particles, different physical prop-
erties are observed. Within the RSOSW model the situation is as follows. For the bEW and
the bKPZ+ universality classes (p ≥ 1), as q0 decreases (more attraction), there is a thresh-
old q∗

0 , which depends on p, such that the transition becomes first order for q0 < q∗
0 . In both

cases the critical point qc remains unaltered, see Fig. 7.
In the bKPZ− class (0 < p < 1) below q∗

0 , a new critical value q(2)
c arises, this is shown

in Fig. 7. For q0 < q∗
0 there is a phase coexistence region, in the sense that, depending on

the initial conditions, the interface will be a moving or a bound one. For example, if a flat
interface at a height far enough from the substrate is taken as initial condition, the interface
will grow and not stay pinned to the substrate. Inside the phase coexistence region, the bound
phase is the stable one in the thermodynamic limit, i.e., the average time for the interface
to detach from the wall grows exponentially with the system size [26, 31, 32]. The critical
behavior of this new transition, taking place at value q(2)

c , will be addressed in Sect. 4.
Considering the bKPZ equation (6) instead of the RSOSW model, the situation is the

same as the one depicted in Fig. 7, with the parameter a playing the role of q , the parameter
b the role of q0 and c with a fixed positive value. Note however that a and q or b and q0 do
not have precisely the same meaning and their exact relationship is not known.

In equilibrium wetting, at a = ac , the transition that occurs when approaching bW (anal-
ogous to q∗

0 ), for b < bW , is known as critical wetting. Whereas the transition taking place,
for b > bW , by approaching ac , with a < ac , is known as complete wetting [7]. Therefore,
critical (complete) wetting corresponds to q = qc (q0 > q∗

0 ) and q0 (q) approaching q∗
0 (qc)

with q0 < q∗
0 (q < qc) in the RSOSW model. As pointed out in [32], the transition taking

place for q0 < q∗
0 by varying q at the new critical point q(2)

c > qc for the bKPZ− class is not
a wetting transition but rather a depinning transition because there is no phase coexistence
at criticality (phase coexistence corresponds to q = qc , where the interface velocity is zero).

At the tricritical point, q0 = q∗
0 , new critical behavior is observed. We define the expo-

nents associated to it using the superscript t . For example, at q0 = q∗
0 , we have

ρs
0 ∼ (q − qc)

βt

. (30)

Fig. 7 Representation of the situations generated by the an additional attractive force between substrate and
particles, for a fixed value of p. For the bKPZ+ and the bEW cases the transition goes from second order
(full line) to first order (dotted line) depending on the value of q0. The critical point qc is not changed. For
the bKPZ− case there is a phase coexistence (PC) region. Considering the bKPZ equation, the situation is
the same with a playing the role of q and b the role of q0
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We also define the following exponents associated to critical wetting,

ρs
0 ∼ (q∗

0 − q0)
β(2)

, (31)

w ∼ (q∗
0 − q0)

ζ (2)

, (32)

where the above relations are valid at q = qc .

3 Exact Results

The solution of the RSOSW model, when it is on the bEW universality class, is presented
below. For p = 1 detailed balance holds and the model can be solved exactly for (q ≤ 1)
[16]. First we solve the model for q0 = q , then we consider the more general case q0 ≤ q

[26]. Concerning exact solutions obtained with the height probability distribution in the sta-
tionary state in the bound phase, our presentation follows [33]. Also, by using a method
introduced in [34], we calculate the velocity of a free interface for the RSOS model, lead-
ing to an exact calculation of the exponent βv , which, to our knowledge, is not calculated
elsewhere.

3.1 Transfer Matrix Formalism

In a general dynamical system, detailed balance is fulfilled if, for every pair of microscopic
σ and σ ′, the probability currents cancel each other, i.e.

Pσ wσ→σ ′ = Pσ ′wσ ′→σ , (33)

where Pσ is the probability of being in the state σ in the stationary state and wσ→σ ′ is the
transition rate from σ to σ ′. From Fig. 8 we see that, for the RSOSW model, it is satisfied
only if

PI = q−1PII = q−2PIII = q−1p−1PIV = p−1PI, (34)

which implies in p = 1.
The detailed balance condition (33), with p = 1, gives the following equation,

P ({hi}) = qP ({hi − 1}), (35)

Fig. 8 Four different interface
configurations forming a closed
cycle and the respective
transition rates
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where the configurations {hi} = h1, . . . , hi, . . . , hL and {hi −1} = h1, . . . , hi −1, . . . , hL are
such that the RSOS constraint is obeyed. A simple ansatz arising from this condition is

P ({hi}) = Z−1
L

L∏

i=1

qhi , (36)

where ZL is the partition function. It is given by

ZL =
∑

{h}

L∏

i=1

qhi , (37)

where the sum is over all configurations satisfying the RSOS constraint. We can write the
probability distribution (36) in the form

P (h1, . . . , hL) = Z−1
L

L∏

i=1

Thi ,hi+1 , (38)

where Thi ,hi+1 is the transfer matrix and we are using periodic boundary conditions (hL+1 =
h1). The elements of the transfer matrix are given by

Tk,k′ = q(k+k′)/2(δk,k′ + δk,k′+1 + δk,k′−1), (39)

where k ≥ 0 and k′ ≥ 0. Note that the transfer matrix is tridiagonal and this is a direct
consequence of the RSOS constraint.

Within the transfer matrix formalism, the partition function reads

ZL =
∑

h1

· · ·
∑

hL

Th1,h2Th2,h3 · · ·ThL−1,hL
ThL,h1 =

∑

h1

T L
h1,h1

= Tr(T L), (40)

where the operator Tr gives the trace of the matrix. We are interested in calculating the
density of sites at height k, it can be written in the following form,

ρk = Z−1
L

∑

{h}
δh1,k

L∏

i=1

Thi ,hi+1 = Z−1
L

∑

h2

· · ·
∑

hL

Tk,h2 · · ·ThL,k = Z−1
L T L

k,k, (41)

where the term δh1,k imposes the constraint of summing only over configurations with
h1 = k. In bra-ket notation the same quantity becomes

ρk = Z−1
L 〈k|T L|k〉, (42)

where the vectors |k〉 form the canonical basis in height space.
In most of the following calculations the limit L → ∞ will be taken: on it

ZL ≈ �L (43)

and

ρk = |〈k|φ〉|2
|〈φ|φ〉| , (44)
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with � being the maximum eigenvalue of the transfer matrix and |φ〉 the corresponding
eigenvector, i.e.

T |φ〉 = �|φ〉. (45)

After setting up the transfer matrix formalism we proceed to calculate the critical expo-
nents of the bEW universality class.

3.2 Calculation of the Critical Exponents

Based on dimensional analysis, (21) and (24), we observe that the conditional correlation
function,

c(l) = 〈δhi ,0δhi+l,0〉
〈δhi ,0〉

, (46)

is expected to follow the relation

c(l) ∼ l−β/ν⊥ , (47)

valid at the critical point. This quantity is equal to the sum of all possible paths, each of
which multiplied by its respective weight, connecting two points at height zero with a dis-
tance l from each other. At the critical point all non-zero elements of the transfer matrix
are equal to one, implying that all possible paths have the same weight. Therefore, for large
enough l and at criticality, the number of all possible paths connecting two points at height
zero at a distance l from each other is equivalent to the probability that a random walk start-
ing at the origin will come back to the origin for the first time at time l. It is known that the
probability distribution of the time that a random walker takes to return to the origin for the
first time τ is given by P (τ) ∼ τ−3/2 [35]. From this it follows that, at criticality,

c(l) ∼ l−3/2 (48)

and, therefore, β/ν⊥ = 3/2. We note that this kind of random-walk argument was success-
fully used in equilibrium wetting [36].

We now consider the problem in the thermodynamic limit, L → ∞. From (39) and (45)
it follows that

qk(q−1/2φk−1 + φk + q+1/2φk+1) = λφk, (49)

where φk is a component of the vector |φ〉. In order to solve this equation we take the
continuum limit, which should be valid when we are close enough to criticality. On this
limit: k → h, φk → φ(h) and (49) becomes

d2

dh2
φ(h) + (3 − �)φ(h) − 3εhφ(h) = 0, (50)

where ε = 1 − q . The solution of it is

φ(h) = Ai

(
3εh + � − 3

(3ε)2/3

)
, (51)

where Ai(x) is the Airy function. From the condition that φ(h) has to vanish for h < 0 it
follows that � = 3 and

φ(h) = Ai(31/3ε1/3h). (52)
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With this explicit form of φ(h) the calculation of the mean height and the interface width is
straightforward, they are given by

〈h〉 = A−1
∫ ∞

0
φ(h)2h ∼ ε1/3, w =

√

A−1

∫ ∞

0
φ(h)2[h − 〈h〉]2 ∼ ε1/3, (53)

where A = ∫ ∞
0 φ(h)2 dh. Since φ(0) = 0, in order to calculate the density of sites at zero

height in the continuum limit we have to calculate ρ(h) at some small fixed height h = δ.
Considering that δ is much bigger than ε and is small enough such that φ(δ) ≈ δφ′(0) is a
good approximation, we have

ρ(0) ∼ A−1(φ′(0)2), (54)

which gives

ρ(0) ∼ ε. (55)

These exact results are all for the stationary state, the present method does not allow us
to calculate time-dependent quantities. In order to obtain them we resort to Monte Carlo
simulations [33] or numerical integration of a set of equations obtained with the supposition
that the time-dependent probability distribution is pair-factorized, which seems to be the
case (see Sect. 5). Both methods give the following results,

〈h〉 ∼ t1/4, w ∼ t1/4 (56)

and

ρ0 ∼ t−3/4. (57)

We have obtained the critical exponents of the bEW universality class for d = 1, they
are: β = 1, ν⊥ = 2/3 and ν‖ = 4/3. The above calculations are not possible for the bKPZ
case (p �= 1), where we have to use numerical simulations to obtain the critical exponents.
Next we consider the new scenario generated by an attractive substrate for the bEW class.

3.3 The Case q0 �= q

With q0 < q , below a certain value of the deposition rate at height zero q∗
0 the phase transi-

tion becomes first-order. We now calculate the value q∗
0 , show that the transition is first-order

for q0 < q∗
0 and calculate the exponents associated to the tricritical point.

The only elements of the transfer matrix that are changed, when q0 �= q , are T0,0 = q/q0,
T0,1 = (q/q0)

1/2 and T1,0 = (q/q0)
1/2. The new transfer matrix can be written in the form

Tk,k′ = q(k+k′)/2(q/q0)
(δk,0+δk′,0)/2(δk,k′ + δk,k′+1 + δk,k′−1), (58)

where k ≥ 0 and k′ ≥ 0. Using (38), one can verify that the probability distribution obtained
with this transfer matrix satisfies detailed balance.

For q > 1, the probability distribution is clearly not normalizable, independently of the
value of q0. This shows that the critical point is unchanged with the attractive force between
the substrate and the absorbed particles. For q = 1, we make the assumption that

φk = xk with k ≥ 1, (59)
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where x < 1. Using the transfer matrix (58), the set of equations obtained by applying (59)
to equation (45) is

q−1
0 φ0 + q

−1/2
0 x = �φ0,

q
−1/2
0 φ0 + x + x2 = �x, (60)

x−1 + 1 + x = �.

It has the solution

φ0 = q
1/2
0 , x =

√
1 + 2q0 − 3q2

0

2(1 − q0)
− 1

2
, � = x + 1

q0
. (61)

Which, with (44) gives

ρ0 = 1 + q0 − 6q2
0 + √

1 + 2q0 − 3q0

2 + 4q0 − 6q0
. (62)

From this result we see that ρ0 = 0 at q∗
0 = 2/3, ρ0 > 0 for q0 < q∗

0 and for q0 > q∗
0 the

assumption (59) is not valid. Since ρ0 is finite at the critical point q = 1 for q0 < q∗
0 , the

transition is first-order.
The exponents related to critical wetting can be obtained exactly as follows. From (62),

with q0 below and near enough q∗
0 = 2/3, we have

ρ0 ∼ (q∗
0 − q0)

1, (63)

giving β(2) = 1 for the bEW class. The density of particles at any height h can also be
calculated, from (44) and (61), as follows

ρk = x2k

q0 + x2/(1 − x2)
. (64)

The above equation with 〈h〉 = ∑
kρk and w2 = ∑

(k − 〈h〉)2ρk , gives

〈h〉 ∼ (q∗
0 − q0)

−1, w ∼ (q∗
0 − q0)

−1, (65)

therefore ζ (2) = 1.
The critical exponents defined at the tricritical point and its vicinity, with q < qc and

q0 = q∗
0 , were obtained numerically in [33]. The results are in agreement with:

ρ0 ∼ (qc − q)1/3, (66)

〈h〉 ∼ (qc − q)−1/3, w ∼ (qc − q)−1/3, (67)

ρ0 ∼ L−1/2, (68)

where the first two relations are valid near and below criticality and the third at the critical
point. The off-critical results can be confirmed by numerical diagonalization of the trans-
fer matrix, whereas the finite-size result can be reproduced by evaluating the product of L

transfer matrices. Time-dependent results, as in the case of complete wetting, are obtained
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by MC simulations [33] or numerical integration of the set of equations, obtained with the
supposition that the time-dependent probability distribution factorizes (see Sect. 5), they are:

〈h〉 ∼ t1/4, (69)

ρ0 ∼ t−1/4. (70)

These results give the exponents βt = 1/3, νt
⊥ = 2/3 and νt

‖ = 4/3, different from the bEW
critical exponents. Nevertheless, the exponents z = 2 and γ = 1/4 are still the same.

3.4 Exact Calculation of the Velocity of a Free Interface

A method to obtain exact results, in the long time limit, for the RSOS model without the
wall was developed by Neergaard and den Nijs [34]. Here we use this method to calculate
the velocity of a free interface and, consequently, obtain the exponent βv . The calculations
presented below are summarized in the appendix of [37] for a slightly different model.

The variables σi = hi+1 − hi can take only the values −1,0,1 because of the RSOS
condition. With them the free interface problem can be mapped onto a problem of particles
jumping in a lattice with the following rules:

00 → + − with rate q

0+ → +0 with rate q

−0 → 0 − with rate q

−+ → 00 with rate q

00 → − + with rate p

0− → −0 with rate 1

+0 → 0 + with rate 1

+− → 00 with rate 1.

(71)

Since the initial condition is a flat interface and all possible transitions conserve the total
charge, the number of positive charges (σi = 1) in the system is equal to the number of
negative charges (σi = −1). In [34] it was shown (in a more general context) that in the
region of the phase diagram where

p = q
2 − q

2q − 1
and q > 1 (72)

the ansatz

P (N) = Z−1
L

(
q

2q − 1

)−N

, (73)

where P (N) is the probability of having a configuration with N positive charges in the limit
t → ∞ and ZL is a normalization constant, is in agreement with the dynamical rules (71).
The normalization condition gives

ZL =
L/2∑

N=0

L!
N !N !(L − 2N)!

(
q

2q − 1

)−N

. (74)
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In the thermodynamic limit, L → ∞, the sum in the partition function ZL is dominated by
the term N = L/(2 + 1

√
q/(2q − 1)), giving the following density of positive (or negative)

charges:

ρ = 1

2 + √
(2q − 1)/q

+ o(1/L). (75)

The interface velocity is given by

v = (q − p)〈00〉 + q〈0+〉 − 〈+0〉 − 〈−0〉 + q〈−0〉 + q〈−+〉 − 〈+−〉. (76)

Because of (73), 〈00〉 = (1 − 2ρ)2 + o(1/L), 〈+0〉 = 〈0+〉 = 〈−0〉 = 〈0−〉 = (1 − 2ρ)ρ +
o(1/L) and 〈−+〉 = 〈+−〉 = ρ2 + o(1/L). Hence,

v = (q − 1)2ρ + o(1/L), (77)

where ρ is given by (75).
We obtained the asymptotic velocity for the free interface case, which is equal to the

asymptotic velocity of the RSOSW model in the moving phase. Even though the exponent
βv is defined in the horizontal direction in the q × p plane we expect it to be the same in
other directions, because numerical calculations of the exponent βv for different values of p

are all compatible with βv = 1 [16]. Therefore, we have computed the exponent βv exactly.

4 Numerical Simulations

Here we discuss some technical aspects of Monte Carlo simulations of the RSOSW model
and summarize numerical results for the bKPZ− universality class obtained in [38]. We
then establish a scaling relation between the exponents, based on heuristic arguments and
in agreement with the numerical results, which shows that with the introduction of the wall
just one new independent exponent arises. We explain how to integrate the bKPZ equation
numerically in an efficient way and demonstrate numerical results based on this method.
The attractive wall case and extensions of the problem are also discussed.

4.1 The Exponents of bKPZ− Universality Class

In order to calculate the critical exponents numerically by simulating a lattice model one can
use off-critical, finite-size and time-dependent simulations. With off-critical simulations it is
possible to calculate the exponents β and ζ , while the exponents θ and ν⊥ can be obtained
with time-dependent and finite-size simulations, respectively.

A technical problem with the off-critical simulations is the EW-KPZ crossover, which
manifests itself as follows. For a moderate simulation effort, it gives the impression that the
critical exponents β and ζ (measured for a fixed value of p) depended continuously on p,
varying from the EW exponent β = 1 and ζ = 1/3, when p is near 1, to larger values as
p gets smaller, where we are considering the bKPZ− class (0 < p < 1). But this is not the
case, when making measures near the equilibrium point one has to access regions closer to
criticality in order to get appropriates value for β and ζ , they first look like bEW exponents
and then they crossover slowly to the bKPZ− values. Because of this crossover, simulations
with small values of p provide better results, that is why in [38] the simulations were done
at p = 0.001. The off-critical simulations are presented in Fig. 9 and from it results

β = 1.67(5), ζ = ν⊥α = 0.41(5). (78)
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Fig. 9 Off-critical simulations. Density of sites with height zero ρ0 (left) and the interface width w (right)
as functions of the distance from the critical point qc = 0.4295(1), with p = 0.001 and L = 4096. Data taken
from [38]

The EW-KPZ crossover also takes place when considering the bKPZ+ case (p > 1), with
the difference that in this case, in order to get better numerical results, one has to use large
values of p.

As for finite-size simulations, what is appropriate for the RSOSW model is to measure
how the critical point varies with the system size, because, as observed in [38], this variation
is very pronounced. From relation (24) it is expected that

qc(∞) − qc(L) ∼ L−1/ν‖ , (79)

where qc(L) is the critical point for a system of size L and qc(∞) is the extrapolated value.
With the use of this relation, Fig. 10 gives

ν⊥ = 1.00(3). (80)

From the scaling relation (29) and the above numerical result we get the exponent ζ =
0.5(1), in agreement with the value coming from off-critical simulations 0.41(5).

With time-dependent simulations the exponent θ is obtained by plotting n0 as a function
of time at criticality. From Fig. 10,

θ = β/ν‖ = 1.15(3). (81)

From the scaling relations (27), (28), the finite-size result ν⊥ = 1.00(3) and z = 3/2 one can
see that θ = 1.15(3) is in agreement with the off-critical result β = 1.67(5).

Results coming from finite-size and time-dependent simulations are certainly more reli-
able than when extracted from off-critical simulations. Nevertheless, off-critical simulations
are important to confirm scaling relations. Next we propose a scaling relation and show that
it is in agreement with the numerical results presented here.

4.2 Scaling Picture and Differences Between the bKPZ Universality Classes

We now show, with a heuristic argument, that with the introduction of the wall just one new
independent exponent arises. We suppose that the velocity of the interface in the growing
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Fig. 10 Left: Difference 	 between the finite-size critical point qc(L) and the extrapolated critical point
qc(∞) = 0.4295(3) as a function of L for p = 0.001. Right: ρ0 as a function of t at the critical point
qc = 0.4295(1), with p = 0.001, L = 8192 and 800 realizations. Data taken from [38]

Table 1 List of the critical exponents. Most of DP exponents in the first line come from [45], the exceptions
are α and ζ that come from [40]. The bEW exponents come from the exact results presented in Sect. 3. The
bKPZ exponents come the numerical results for the exponent θ obtained in [29] and the scaling relations
presented here. Table taken from [38]

Case z ν⊥ ν‖ ζ θ β

DP 1.58 1.10 1.73 0 0.159 0.276

bKPZ− 3/2 1 3/2 1/2 1.184(10) 1.776(15)

bEW 2 2/3 4/3 1/3 3/4 1

bKPZ+ 3/2 1 3/2 1/2 0.228(5) 0.342(8)

phase follows v ∼ q − qc , which is in agreement with numerical results and an exact result
presented in the last section. Since it is the time derivative of the mean height, which has the
same dimension as the interface width w, and ξ‖ has the dimension of time, we expect that
w ∼ (q − qc)ξ‖. With this, (22), (24) and (27) we have the scaling relation

ν⊥ = 1

z − α
. (82)

In this argument we combined relations valid above criticality (v ∼ q − qc) with relations
valid below. However, one can see in Table 1, where the exponents of the bKPZ and bEW
universality classes are displayed, that the scaling relation (82) leads to exponents in agree-
ment with the numerical (bKPZ classes) and exact (bEW class) results obtained here. A pos-
sible reason for that is: without a wall for q < qc the interface would have a negative velocity,
going linearly to zero as a function of the distance from the critical line. It seems that, with
the presence of the wall, quantities with the dimension of the mean height divided by quan-
tities with dimension of time still go to zero linearly as criticality is approached. The scaling
relation (82), was obtained for the first time in [15], for all dimensions, using a different
argument.

With the scaling relation (82) and z = α/γ = ν⊥/ν‖ we have that the critical exponents
ν‖ and ν⊥ are determined by the scaling exponents. Therefore, there is only one independent
(from the scaling exponents) critical exponent left, which is β .



748 A. Cardoso Barato

Fig. 11 Upper row: Typical spatio-temporal configuration of contact points with the substrate. Lower row:
Final interface configuration at t = 5000. The figures were obtained with numerical simulations of the SSW
model atp = 1 (λ < 0) and p = 0 (λ > 0). The number of contact points in the λ < 0 case is clearly smaller.
Figure taken from [29]

All the above discussion should also be valid to the bKPZ+ universality class, with the
difference that the new critical exponent β (or θ = β/ν‖) has a different value. The best way
to obtain the new critical exponent numerically is to perform time-dependent simulations
with the SSW model, since in this model the critical point is known exactly. This was done
in [29], and the estimated exponents are summarized in Table 1.

The exponent β is bigger (smaller) than one for the bKPZ− (bKPZ+) universality class,
this tell us that a typical interface configuration of the bKPZ− universality class, at critical-
ity, is characterized by a smaller number of contact points with the substrate, in comparison
to a bKPZ+ typical interface. In Fig. 11 we show typical interface configurations, obtained
in [29] with the SSW model at p = 0 (λ > 0) and p = 1 (λ < 0). For the bKPZ− case, a
smaller number of contact points and larger detached regions (distance between two contact
points) are observed.

Remarkably, the distance between the contact points differs from the correlation length.
More specifically, since the average distance of contact points l(t) is proportional to ρ−1

0 (t)

and ν⊥ = 1, we have that l(t) > ξ⊥(t) (l(t) < ξ⊥(t)) for the bKPZ− (bKPZ+) class. The in-
terplay of these two length scales leads to other differences between the bKPZ+ and bKPZ−
universality classes, they are related to the distribution function of the distances between
contact points and to the first depinning time probability distribution [29].

4.3 Wetting as a Contact Process with an External Field

Let us now turn to the special case p = 0. Here the RSOSW model exhibits a very dif-
ferent dynamics, which was introduced in [39] and further analyzed in [37, 40]. This is a
very particular case of the model, because, with p = 0, once a layer is completely filled an
evaporation on it becomes impossible. Hence, since the initial condition is a flat interface at
height zero, the presence of the wall makes no difference.

It was shown in [39] that the phase transition at p = 0 pertains to the direct percolation
(DP) universality class [41, 42], which is the most prominent universality class of nonequi-
librium phase transitions into an absorbing state [43, 44]. An explanation for this comes from
the fact that the RSOSW model at p = 0 can be related to the contact process (CP) [45]. The
CP is a well-known model in the DP universality class, it can viewed as a simple, and also
simplistic, model for the propagation of a disease, where each site can be in two states:
empty (healthy) or occupied by a particle (infected). Particles can create other particles in
empty nearest neighbors sites (propagation of the disease) or die spontaneously (cure). If
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the system has no particles (no sick individuals) it is in the absorbing state and the dynam-
ics ceases. A non-exact map between the CP and the RSOS at p = 0 model was proposed
in [39] where sites with zero height are related to the infected individuals in the contact
process. Hence, once the first layer is filled it is analogous to enter the absorbing state in
CP, since no particles in this layer can be evaporated anymore and the height zero becomes
inaccessible.

In [38] it was shown that the region in the phase diagram with 0 < p < 1 can be in-
terpreted as a DP process with an external field that destroys the transition. In the CP, an
external field is introduced by allowing creation of particles at a certain rate. With it, there
is no absorbing state anymore and the transition is lost. In the same way the non-zero p

destabilizes the absorbing state in the RSOSW model, since even after the first layer is com-
pletely filled an evaporation on it is still possible. With this interpretation the curvature of
the phase transition line, Fig. 3, is predicted and a crossover exponent from the DP to the
bKPZ− universality class calculated (see [38] for details).

4.4 Numerical Integration of the bKPZ Equation

The MN equations can be integrated numerically very easily by using a method introduced
in [46] to integrate Langevin equations with non-additive noise. The method consists of inte-
grating the deterministic and stochastic parts of a discrete version of the Langevin equation
separately in each time step.

We now explain this method for the MN1 equation in the case of an one-dimensional
substrate. To this end we have to consider the spatially discrete version of (9), which reads

d

dt
ni = −ani − bns+1

i − cn2s+1
i + σ [ni+1 + ni−1 − 2ni] + niζi, (83)

where n(x, t) → ni(t), x → iδx and we are using δx = 1. The algorithm evolves as follows.
First a variable n∗

i (t) is calculated from

n∗
i (t) = ni(t) + {−bni(t)

s+1 − cni(t)
2s+1 + σ [ni+1(t) + ni−1(t) − 2ni(t)]}dt, (84)

which corresponds to one step of the integration, using the Euler method, of the deterministic
part (without the linear term) of (83). After that, ni(t + dt) is obtained with

ni(t + dt) = n∗
i (t) exp(−adt + √

Dtηi), (85)

which is the solution of the one-variable Langevin equation constituted only of the stochastic
part and the linear part of (83), where ηi is a random number coming from a Gaussian
distribution with zero mean and unitary variance. The reason to add the linear term in the
second step of the update scheme is that the stochastic part can still be solved exactly with
it. Note that the term −2σni , included in the first step, could, instead, be included in the
second step. After all the L variables are actualized according to the above scheme a step dt

is completed.
The numerical integration of the MN2 equation is more complicated because of the term

(∇n)2/n [47]. In order to overcome this problem, Al Hammal et al. [48] considered a non-
order parameter Langevin equation. Such an equation is obtained with the variable m = 1/n

that transforms the MN2 (11) into:

∂

∂t
m = am + bm1−s + cm1−2s + σ∇2m + mζ. (86)
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Fig. 12 Numerical integration of (86). Left: Time-dependent simulations with the order parameter n = 〈m〉
as a function of time, at the critical point ac = 0.39025(25) for L = 2048, giving θ = 0.235(10). Right:
Finite-size simulations with the saturation value of n as a function of the system size L at the critical point,
giving β/ν⊥ = 0.33(2). The values of the other parameters are b = 1, c = 0, σ = 0.1, D = 1, s = 4 and
dt = 0.1

We integrated this equation numerically using the algorithm explained above. We performed
time-dependent and finite-size simulations, obtaining θ = 0.235(10) and β/ν⊥ = 0.33(2)

(see Fig. 12). The results are in agreement with the results obtained in [48] and the results
presented in Table 1. We note that changing the value of s does not change the critical
behavior [48] (in Fig. 12 we used s = 4).

4.5 Numerical Results for the Attractive Substrate Case

As discussed in Sect. 2, in the bKPZ− case with an attractive force between the substrate
and the interface there is a phase coexistence region if the attraction is strong enough and a
depinning transition takes place at a new critical point (see Fig. 7).

This depinning transition was first observed to be first-order [26, 31]. Later Muñoz and
Pastor-Satorras [24], with numerical integration of the MN1 equation, obtained exponents of
the DP universality class. In Fig. 13 we present off-critical and time-dependent simulations
for the RSOSW that agree with the findings from [24]. We used the values p = 0.001, where
qc = 0.4295(1), and q0 = 0.39 (which is smaller than q∗

0 ). We obtained the new critical point
at q(2)

c = 0.4377(1), β = 0.25(2) from off-critical simulations and θ = 0.159(5) from time-
dependent simulations, both are in agreement with the DP exponents (see Table 1). We note
that DP exponents were also obtained for other microscopic models [27, 49]. Therefore, the
observation of a first-order phase transition seems to be a transient effect.

Hinrichsen [50] argues about a possible connection between the pair contact process with
diffusion (PCPD) and nonequilibrium wetting, pointing that the MN1 equation is equivalent
to the Langevin equation for the PCPD [51]. There has been a long discussion about the
universality class of the PCPD [52], and it is still not clear if the PCPD model is in the DP
universality class or if it is in a new universality class of models with an absorbing state. The
result obtained in [24] would be in agreement with the PCPD being in the DP universality
class, however, the continuum approach may be inadequate for PCPD [50].

Although the DP exponents were obtained in Fig. 13, the transition, that takes place
with the parameters used there, is different from the transition at p = 0. To see this one
can consider the survival probability Ps(t), which is the probability that the system will
not enter the absorbing state until time t . At p = 0 the survival probability can be less
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Fig. 13 Simulations of the RSOSW model with an attractive force between the substrate and the interface.
Left: Off-critical simulations giving β = 0.25(2). Right: Time-dependent simulations giving θ = 0.159(10).
Both exponents are in agreement with the DP exponents. The simulations were done at p = 0.001 and

q0 = 0.39, where qc = 0.4295(1) and q
(2)
c = 0.4377(1)

than one because once ρ0 = 0 it will remain zero in the dynamics that follows. It decays
to zero, in a power-law (exponential) way at (above) criticality and it reaches a saturation
value after some transient below criticality. For p �= 0 the survival probability is always
one (in the moving and in the bound phases) because even if the first-layer is completely
filled evaporation events on it are still possible. The Langevin equation related the RSOSW
model at p = 0 is the DP Langevin equation [26], where the noise term is multiplied by
the square root of the field, and it cannot be obtained from the MN1 equation with a simple
transformation of variables.

The tricritical point of the bKPZ− universality class was analyzed, with numerical in-
tegration of the MN1 equation and MC simulations of the SSW model, by Romera et al.
[53]. They obtained γ = 0.35(2), z = 1.4(1), β(2) = 1.50(9), ζ (2) = 0.9(1), θ t = 0.49(2)

and νt
‖ = 2.0(2). As is the case of the bEW class, the critical exponents βt , νt

⊥ and νt
‖ differ

from the critical exponents of the bKPZ− class while the scaling exponents are in agreement
with the KPZ values γ = 1/3 and z = 3/2. As far as we know, the critical behavior of the
tricritical point of the bKPZ+ universality class was not yet analyzed.

We point out that the wetting transition can be envisaged as a contact process with long-
range interactions, considering the contact points with the substrate as active sites and the
detached part between two contact points as generating an effective long range interaction
between them [54–56]. In the so-called σ -process [54], depending on the parameter control-
ling the long-range interactions the phase transition may be DP or first-order.

4.6 Extensions of the Problem

Hitherto only short range interactions between the wall and the absorbed particles were
considered. In order to study long range interactions one can take the potential

V (h) = b

shs
+ c

lhl
, (87)

where the parameters b and c have the same function as they have in the short-range interac-
tion potential (8) and l > s. Hammal et al. [57] studied complete wetting for the long range
interactions case with numerical integration of the associated multiplicative noise equation,
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coming from the Cole-Hopf transformation of the bKPZ equation (6) with the potential (87),
and power counting arguments. The results are: for s > 1 the critical behavior is the same
as the one obtained with short range interactions for the bKPZ− and bKPZ+ universality
classes; for s < 1 mean field (in the sense that the noise is irrelevant) critical behavior holds.
These results for long range interactions were also confirmed with a microscopic model in
[57]. Another microscopic model with long range interactions was previously studied in
[49], nevertheless, as pointed out in [19], it does not display a mechanism that produces
surface tension (like the RSOS constraint for example) and, therefore, it is not clear if it
corresponds to the bKPZ equation with the potential (87).

One relevant point in considering long range interactions is that it may play an important
role in possible experimental realizations of nonequilibrium wetting. Another generalization
of the problem, that can be central in an experiment, is to consider diffusion of single atoms
in the interface. This generalization was studied in [58] using the RSOSW model with diffu-
sion. In this new version of the model, another possible transition, taking place with rate D,
is hi → hi −1 and hj → hj +1, where j is one of the nearest neighbors of i, before the tran-
sition hi > hi±1 and the final configuration respects the RSOS condition. What was found
in [58] is that, for p �= 1 diffusion can shift the critical line but the critical behavior is still
the same and at p = 1 the critical behavior and the critical point do not change.

Another extension, which is not yet studied, is nonequilibrium wetting with disorder. In
equilibrium wetting, the random substrate and also random bulk cases were studied, and new
physical properties are born from these situations [7]. An open problem, in the equilibrium
case, is what happens to critical wetting when a random substrate is considered [59–61].

5 Mean Field Approximations for Microscopic Models

In this section we present mean field approximations for the RSOSW and SSW models.
We first write down the master equation for surface growth models and then apply simple
and pair mean field approaches in order to solve it. The first mean field approximation, for
microscopic models for nonequilibrium wetting, was introduced in [33]. The presentation
here follows the works of Ginelli and Hinrichsen [28] for the SSW model and Barato and
de Oliveira [63] for the RSOSW model. We also obtain some new results concerning pair
mean field approach for the RSOSW model.

5.1 Master Equation

A stochastic process with continuous time evolves according to the master equation (see
[62]), such equation reads

d

dt
Pσ (t) =

∑

σ ′ �=σ

(Pσ ′(t)wσ ′→σ − Pσ (t)wσ→σ ′), (88)

where Pσ (t) is the probability of being in a configuration σ at time t and wσ ′→σ is the
transition rate from the configuration σ ′ to the configuration σ . In the case of surface growth
models with deposition and evaporation rates depending only on height of the target site and
its nearest neighbors, the master equation becomes

d

dt
P (h1, h2, . . . , t) =

∑

n

L∑

i=1

{wn(hi−1, hi − n,hi + 1)P (h1, . . . , hi − n, . . . , t)

− wn(hi−1, hi, hi+1)P (h1, . . . , hi, . . . , t)}, (89)
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where wn(hi−1, hi − n,hi+1) is the rate for a transition from (. . . , hi−1, hi − n,hi+1, . . .)

to (. . . , hi−1, hi, hi+1, . . .), L is the system size and we are considering an one-dimensional
system with periodic boundary conditions.

Denoting wn(hi−1 = k,hi = l, hi+1 = m) by wn(k, l,m) we have that for the RSOSW
model, where the height changes by only n = ±1, the rates are:

w+(k, k, k) = w+(k + 1, k, k) = w+(k, k, k + 1) = w+(k + 1, k, k + 1) = q, (90)

w−(k, k + 1, k) = w−(k, k + 1, k + 1) = w−(k + 1, k + 1, k) = 1, (91)

and

w−(k + 1, k + 1, k + 1) = p. (92)

On the other hand, for the SSW model they are non-zero only for n = ±2 and given by

w+2(k, k − 1, k) = p (93)

and

w−2(k, k + 1, k) = 1 − p. (94)

In the following we denote P (k, l,m, t)wn(k, l,m) by Jn(k, l,m, t). The time evolution
of the one-site probability distribution is obtained by summing over all heights but one in
(89), which gives

d

dt
P (l, t) =

∑

k,m

∑

n

{Jn(k, l − n,m, t) − Jn(k, l,m, t)}. (95)

For the pair mean field approach (see below) we also need the time evolution of the two-site
probability distribution, it is given by

d

dt
P (k, l, t) =

∑

m

∑

n

{Jn(m,k − n, l, t) + Jn(k, l − n,m, t)

− Jn(m,k, l, t) − Jn(k, l,m, t)}. (96)

The scaling exponents of the KPZ and EW universality classes are related to the inter-
face width w. One can make the stronger assumption that the one-site probability distribu-
tion of these universality classes, for an infinite system and in the long time limit, is given
by

P (h, t) = t−γ f

(
h − vt

tγ

)
, (97)

where f (x) is a scaling function. Since in the calculations that follows we always consider
an infinite system in the long time limit, when possible to solve the problem exactly, we
use this ansatz for the one-site probability distribution at the wetting transition and in the
moving phase.

The mean field approximations we apply to the RSOSW and SSW models in the fol-
lowing consist in approximating the probability distribution P (h1, h2, . . . , t) by a (simple or
pair) factorized form so that the master equation becomes tractable. They are applied to one-
dimensional models and expected to capture some features of them, they are not expected
to become valid above some critical dimension.
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5.2 The RSOSW Model

5.2.1 Simple Mean Field Approximation

In simple mean field, terms like P (k, l,m, t) are approximated by their factorized form, i.e.,

P (k, l,m, t) = P (k, t)P (l, t)P (m, t). (98)

Note that this approximation does not take the RSOS constraint into account. For example,
the probability P (k, k + 2, k, t) is zero in the original problem and in the simple mean field
approach it is simple given by P (k, k + 2, k, t) = P (k, t)2P (k + 2, t).

With this approach the master equation for the one site probability distribution (95) for
the RSOSW model acquires the following simpler form,

d

dt
Pk = q

(
P 3

k−1 − P 3
k

) + (1 − 2q)
(
P 2

k Pk+1 − P 2
k−1Pk

)

+ (2 − q)
(
PkP

2
k+1 − Pk−1P

2
k

) + p
(
P 3

k+1 − (1 − δk,0)P
3
k

)
, (99)

where Pk denotes the one-site probability distribution, k ≥ 0 and P−1 = 0 (in order to ac-
count for the presence of the wall at height zero). The factor (1 − δk,0), multiplying P 3

k ,
comes from the fact that evaporation at zero height is forbidden. The initial condition, cor-
responding to an initially flat interface, is Pk = δk,0.

Below criticality we assume that Pk decays exponentially,

Pk = Axk, (100)

where A = 1−x is a normalization constant and x < 1. This ansatz is valid below the critical
line where the interface is bounded, while at criticality x → 1. By substituting (100) in (99)
we obtain

−px3 + (q − 2)x2 + (2q − 1)x + q = 0, (101)

which, with x = 1, gives the critical line

qc = 1

4
(p + 3). (102)

With the probability distribution (100) we have P0 = 1 − x, 〈h〉 = x
1−x

and w =
√

x

1−x
. From

(101) and (102), one can verify that near the critical line

x ≈ 1 − 2(qc − q)

2
. (103)

Therefore,

P0 ∼ (qc − q)1, 〈h〉 ∼ (qc − q)−1, w ∼ (qc − q)−1, (104)

giving β = 1 and ζ = 1.
In order to solve (99) at and above the critical line we take the continuum limit, where

Pk(t) → P (h, t) and h = kδ. In this limit, to second order in δ, (99) becomes

∂tP (h, t) = −δ12(q − qc)P
2∂hP + δ2(2q + 1 + 3p)

(
P (∂hP )2 + 1

2
P 2∂2

hP

)
. (105)
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In the long time limit higher order terms are irrelevant even with δ = 1. To see this one can
carry out the calculation that follows with general δ and then verify it with the final result.
Since we are interested in this limit we proceed with the calculations setting δ = 1.

At the critical point the first term on the right hand side of the above equation vanishes,
using the ansatz (97) we obtain consistency only if γ = 1/4 and v = 0. The differential
equation for the scaling function is

f (x) + xf ′(x) + 2(2q + 1 + 3p)[2f (x)f ′(x)2 + f (x)2f ′′(x)] = 0, (106)

which has the solution f (x) =
√

1 − x2

2(2q+1+3p)
, giving

P (h, t) =
√

t−1/2 − h2

2t (2q + 1 + 3p)
. (107)

Above the critical point only the first term in the right hand side of (105) matters, the
second is irrelevant for t → ∞. By following the same procedure as in the previous case,
we obtain γ = 1/3, v = 0 and

f (x) + xf ′(x) − 36(q − qc)f (x)2f ′(x) = 0, (108)

which has the solution f (x) = √
x/12(q − qc), giving

P (h, t) =
√

h

12(q − qc)t
, (109)

for q > qc .
Very surprising is the fact that with this very simple approximation we obtain the KPZ

growth exponent γ = 1/3 above the critical line. A problem with it is that we do not obtain
the mean height growing linearly with time above criticality, i.e., v = 0 also for q > qc . The
next step is to perform an improved approximation, that satisfies the RSOS condition and
gives v > 0 in the moving phase.

5.2.2 Pair Mean Field Approximation

In the pair mean field approximation P (k, l,m, t) = P (k, l, t)P (l,m, t)/P (l, t). This means
that the probability distribution is approximated by a pair factorized form. Clearly, the
present approach satisfies the RSOS condition.

For the pair mean field we need the time evolution of one-site and two-site probability
distributions. Because of the RSOS condition only Pk,k , Pk,k−1 and Pk,k+1 are non-zero.
Therefore, we have four variables: the three two-site probability distributions and the one-
site probability distribution Pk . They are not all independent, one obvious constraint is that
Pk = Pk,k +Pk,k+1 +Pk,k−1 and the other is Pk,k+1 = Pk+1,k . The second comes from the facts
that the transition rates are symmetric and we are considering periodic boundary conditions.
Therefore, we are left with two independent sets of equations.

Applying the pair mean field to (96) we obtain

d

dt
xk = 2q

[
yk−1(yk−1 + xk−1)

Pk−1
− xk(xk + yk)

Pk

]

+ 2

[
yk(yk + xk+1)

Pk+1
− xkyk−1

Pk

]
− 2p

x2
k

Pk

(1 − δk,0), (110)
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Fig. 14 Comparison between
the phase diagrams obtained with
mean filed approximations,
simple (SMF) and pair (PMF),
and simulations (S). Figure taken
from [63]

d

dt
yk = q

x2
k − y2

k

Pk

− y2
k

Pk+1
+ p

x2
k+1

Pk+1
, (111)

where xk = Pk,k and yk = Pk+1,k = Pk,k+1. The term 1 − δk,0 multiplying 2p
x2
k

Pk
in the first

equation comes from the fact that evaporation events are forbidden at height zero and the
initial condition is xk = δk,0 and yk = 0 for all k.

The above equations were integrated numerically in [63], the results are in agreement
with β = 1, ζ = 1/3, the EW growth exponent γ = 1/4 at the critical line and the KPZ
growth exponent γ = 1/3 above it. Also, with this improved approximation an interface
growing linearly with time for q > qc is observed. The phase diagrams, coming from
mean field, are compared to the one obtained with simulations in Fig. 15. One can see
that the agreement of pair mean field is much better when compared to simple mean
field.

In relation to the simple mean field the main improvements are: better agreement with
simulations, when comparing the phase diagram and also observables (not showed here see
[63]), and an interface growing with a non-zero velocity in the moving phase. The exponent
ζ = 1/3 is different from the one obtained with simple mean field, which is ζ = 1, while the
others are the same (including the EW and KPZ growth exponents at and above criticality
respectively).

An interesting feature of the pair mean field is that it becomes the exact solution of the
model when p = 1. From (35), with the pair mean field approach, it follows that

q
xk

Pk

= xk+1

Pk+1
, y2

k = xkxk+1, (112)

which has the solution

xk

Pk

= �−1qk,
yk√

PkPk+1
= �−1qq+1/2. (113)

Equations (112) and (113), with the condition Pk = xk + yk + yk−1, give

qk−1/2
√

Pk−1 + qk
√

Pk + qk+1/2
√

Pk+1 = �
√

Pk. (114)
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This is equal to (49), with the components of the eigenvector, associated to the maximum
eigenvalue �, given by φk = √

Pk .
The pair mean field becomes the exact solution because, at p = 1 and q ≤ 1, the

probability distribution is pair-factorized in the stationary sate. This comes from the fact
that the stationary probability distribution can be written as a product of transfer ma-
trices. A natural question that arises is whether the time-dependent probability distribu-
tion is also pair-factorized. If this is the case, the solution of the pair mean field equa-
tions (110) and (111) would give the exact time-dependent probability distribution. In
order to check this, we compare the one-site probability distribution obtained from sim-
ulations and numerical integration of (110) and (111) in Fig. 15. We see that they are
in agreement, suggesting that the time-dependent probability distribution is indeed pair-
factorized.

The case q0 �= q can also be considered within the pair mean field approach. Equations
(110) and (111), for k = 0 and k = 1, have to be modified to

d

dt
x0 = −2q0

x0(x0 + y0)

P0
+ evaporation part, (115)

d

dt
x1 = 2q0

y0(y0 + x0)

P0
− 2q

x1(x1 + y1)

P1
+ evaporation part, (116)

d

dt
y0 = q0

x2
0 − y2

0

P0
+ evaporation part, (117)

where the evaporation part corresponds to the terms of (110) and (111) that are not multiplied
by q . By integrating these new equations we obtain: for q0 < q∗

0 the transition becomes
first-order for p ≥ 1 while for p < 1 a phase coexistence region (in the sense explained in
Sect. 2) is observed, and the transition at the additional line q(2)

c > qc seems to be first-order.
In Fig. 15 we show the phase coexistence region in the q × p plane for q0 = 0.4 obtained
with numerical integration of the above equations. The results presented in Fig. 15 were not
obtained elsewhere.

Fig. 15 Pair mean field results. Left: Comparison of the one site probability distribution obtained from pair
mean field (PMF) and from simulations (S) at q = 0.99 and t = 500. Right: Phase coexistence (PC) region at
the q × p plane with q0 = 0.4 obtained from numerical integration of the pair mean field equations
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5.3 The SSW Model

For the SSW model, with the pair mean field approach, we are left just with one independent
set of equations. This happens because, in comparison to the RSOSW model, there are the
same two constraints and not four but three variables (Pk , Pk,k+1 and Pk,k−1). We can define
the height for an interface, satisfying the single-step constraint, in the following way. With
every pair of sites with heights given by hi, hi+1, we associate a variable h′

i = min(hi, hi+1),
that can be viewed as defined in a point between the two sites. For example, the initial
configuration, where hi = 0 (hi = 1) if i is even (odd), corresponds to h′

i = 0 for all i. In
this way the two-site probability distribution Pk,k+1 can be viewed as an one-site probabil-
ity distribution Pj , where j = k. In the calculations that follows we use this new one-site
probability distribution.

The master equation for the (new) one-site probability distribution within pair mean field
for the SSW model reads

d

dt
Pj = p

(
P 2

j−1

Pj−1 + Pj−2
− P 2

j

Pj + Pj−1

)

+ (1 − p)

(
P 2

j+1

Pj+1 + Pj+2
− P 2

j

Pj + Pj+1

)
, (118)

where the boundary conditions, to be specified below, depend on the velocity of the wall.
The above equation in the continuum limit reads

∂tP (h, t) = −δ(p − 1/2)∂hP + δ3 (p − 1/2)

12

(
3
(∂hP )3

P 2
− 6

∂hP ∂2
hP

P
+ 4∂3

hP

)

+ δ4

(
(∂hP )4

4P 3
− 5

(∂hP )2∂2
hP

8P 2
+ (∂2

hP )2

4P
+ ∂hP ∂3

hP

4P
− ∂4

hP

8

)
(119)

where h = jδ and we went until order δ4. As we did in the simple mean field for the RSOSW
model we set δ = 1, because one can show that higher order terms are irrelevant in the long
time limit [28].

In order to solve (119) we apply the ansatz (97) to it. The first term produces a linear
propagation of the interface, therefore

v = p − 1/2, (120)

which is in agreement with (14). At p = 1/2 the first two terms on the right hand side of
(119) vanish and a non-trivial equation is obtained only if γ = 1/4, giving the EW growth
exponent in the equilibrium case. For p �= 1/2 the third term on the right hand side of (119)
is irrelevant in the long time limit and a non-trivial equation is obtained only if γ = 1/3,
giving the KPZ growth exponent.

We proceed, presenting the resulting differential equations for the scaling function and
their solutions for the cases p = 1/2, p = 0 and p = 1. In each case subtle boundary condi-
tions have to be used, in order to account for the moving substrate. Our aim is to calculate
the exponent θ , within this approximation, for the bEW and bKPZ universality classes. To
avoid confusion we denote the scaling function f and the critical exponent θ , for each value
of p, by fp and θp .
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5.3.1 bEW Case

At p = 1/2 the differential equation for the scaling function f1/2(x) is

(f1/2)
−3

[
(f1/2)

4 − 5

2
f1/2(f

′
1/2)

2f ′′
1/2 + (f1/2)

2((f ′′
1/2)

2 + f ′
1/2f

′′′
1/2)

+ (f1/2)
3

(
xf ′

1/2 − 1

2
f ′′′

1/2

)
+ (f ′

1/2)
4

]
= 0, (121)

where x = ht−γ . Integrating it we get

2xf1/2 − (f ′
1/2)

3

(f1/2)2
+ 2

f ′
1/2f

′′
1/2

f1/2
− f ′′′

1/2 = 0. (122)

We have to solve the above equation with the appropriate boundary conditions. At p = 1/2
the substrate is fixed at height zero, therefore, the evolution of the probability distribution
Pj follows (118) for j > 0, while at zero height it follows

d

dt
P0 = −1

2
P0 + 1

2

(
P 2

1

P1 + P2

)
, (123)

where the missing terms in the equation come from the facts that evaporation is forbidden
at the substrate and Pj = 0 for j < 0. Now if we assume that the scaling function satisfies
f ′(0) < ∞ we have that Pj ≈ t−1/4f (0) for j = 0,1,2. Substituting this in the last equation,
we see that it is valid only if f (0) = 0 (the left side of the equation is proportional to t−5/4

and the right side is proportional to t−1/4).
The solution of (122), satisfying the boundary condition f (0) = 0, is [28]

f1/2(x) = 25/4

√
π

x2 exp(−x2/
√

2), (124)

which gives θ1/2 = 3/4.

5.3.2 bKPZ Case

For p �= 1/2 the differential equation we get is

(fp)−2[8(fp)3 + 6v(f ′
p)3 − 12vfpf ′

pf ′′
p + 8(fp)2(xf ′

p + vf ′′′
p )] = 0, (125)

where x = (h − vt)t−γ .
Obtaining the suitable boundary conditions, for the cases p = 0 and p = 1, that accounts

for a moving wall, is more involved. With an argument similar to the one presented above it
is possible to show that f1(0) = 0 and f0(0) �= 0 [28]. With these boundary conditions the
solutions of equation (125), that are physically suitable, are [28]:

p = 1: f1(x) ∝
{

[Ai( −x

21/3 ) − 3−1/2Bi( −x

21/3 )]4 if 0 ≤ x < x0,

0 if x0 ≤ x < ∞ (126)

and

p = 0: f0(x) ∝ Ai

(
x

21/3

)4

, (127)
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Fig. 16 The scaling function f (z) for the bKPZ− (p = 1) and the bKPZ+ (p = 0) universality classes,
obtained from numerical simulations (dotted line) and mean field (MF) approach for the SSW model. Figure
taken from [28]

where Ai(x) and Bi(x) are Airy functions and x0 ≈ 3.32426. The scaling function (126)
gives the exponent θ1 = 4/3 for the bKPZ− case and (127) θ0 = 1/3 for the bKPZ+ case.
They are different from of the exponents obtained from numerical simulations (see Table 1).

Although the mean field theory does not predict the correct value of the critical exponent
θ in the nonequilibrium cases, it does predict differences between the bKPZ+ and bKPZ−
universality classes. For the bKPZ− (bKPZ+) an exponent bigger (smaller) than the equi-
librium exponent θ1/2 = 3/4 is obtained. Also, as is shown in Fig. 16, the scaling functions,
given in (126) and (127), are qualitatively similar to the scaling functions obtained from
numerical simulations.

With this mean field approach the one-site probability distribution for the free interface
case can also be obtained, in this case the differential equations for the scaling functions
have to be solved with different boundary conditions [28]. In [64–67], several exact results
were obtained for the free interface case with the polynuclear growth model, which is in the
KPZ universality class. A very important question is whether, with the methods used in [64–
67], the bounded interface case can also be treated, allowing one to compute the exponent θ

for the bKPZ universality classes exactly.

6 Nonequilibrium Wetting in Higher Dimensions

We now turn to nonequilibrium wetting in higher dimensions. First we present a mean field
approach to the MN equations, which yields a qualitative picture of what happens above
the critical dimension. Then we discuss the critical behavior that is expected in higher di-
mensions using power counting and renormalization group arguments. We note that the
description we presented for the one-dimensional case is much more complete and, there-
fore, if one wants a better understanding on what follows one should turn to the references
presented below.

6.1 Mean Field for the Continuum Model

The mean field approximation to the MN equations is done in the following way [68]. The
first step is to approach the discrete Laplacian by

∇2ni = 1

2d

∑

j

(nj − ni) ≈ 〈n〉 − ni, (128)
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where the sum runs over all nearest neighbors and this approximation is expected to become
valid above some critical dimension. The equation that results from it, in the MN1 case, is

d

dt
n = −an − bns+1 − cn2s+1 + σ(n − 〈n〉) + nζ. (129)

The associated Fokker-Planck equation [21, 62] reads

∂

∂t
P (n, 〈n〉, t) = − ∂

∂n
{[−(a − D/2)n − bns+1 − cn2s+1 + σ(n − 〈n〉)]P (n, 〈n〉, t)}

+ D

2

∂2

∂n2
[n2P (n, 〈n〉, t)]. (130)

Solving the above equation in the stationary state we obtain

Ps(n, 〈n〉) ∝ n2(a−σ)/D−1 exp

(
− 2b

Ds
ns − c

Ds
n2s − 2σ 〈n〉

nD

)
, (131)

where Ps(n, 〈n〉) is the probability distribution in the stationary sate. Finally the critical
behavior of the order parameter 〈n〉 is obtained with the self-consistency condition

〈n〉 =
∫ ∞

0 nPs(n, 〈n〉) dn
∫ ∞

0 Ps(n, 〈n〉) dn
. (132)

For the MN2 case we consider the non-order parameter Langevin (86), with the approxima-
tion (128). The solution of the corresponding Fokker-Planck equation is

Ps(m, 〈m〉) ∝ m2(a−σ)/D−1 exp

(
− 2b

Ds
m−s − c

Ds
m−2s − 2σ 〈m〉

mD

)
. (133)

With the mean field approach introduced we proceed considering complete wetting,
therefore, we set c = 0 and b constant and positive. In the calculations below, for the MN2
case we follow [48] and for the MN1 case we follow [69, 70].

For the MN2 case, the self-consistency condition (132) with the probability distribution
(133) leads to the following equation,

〈m〉 = I1(〈m〉)
I0(〈m〉) , (134)

where

Ik(y) =
∫ ∞

0
dx xk+2(a−σ)/D−1 exp

(
− 2b

Ds
x−s − 2σy

xD

)
. (135)

We want to calculate the exponent β , defined by 〈m〉 ∼ (ac − a)−β (m is a non-order para-
meter). We can write Ik(y) as

Ik(y) =
(

2σy

D

)k+2(a−σ)/D ∫ ∞

0
dz z−1−k−2(a−σ)/D e−z exp

[
− 2b

Ds

(
Dz

2σy

)s]
(136)

where z = 2σy

Dx
. At criticality 〈m〉 → ∞, we are interested in the asymptotic form of Ik(y),

with y → ∞. In this limit
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Ik(y) ≈
(

2σy

D

)k+2(a−σ)/D

�(−2a/D + 2σ/D − k)

−
(

2σy

D

)k+2(a−σ)/D−s 2b

Ds
�(−2a/D + 2σ/D − k + s), (137)

where the term exp[− 2b
Ds

( Dz
2σy

)s] was expanded until first order in (z/y)s . The above asymp-
totic form for Ik(y) and equation (134) lead to [48]

〈m〉 ∼ (−D/2 − a)−1/s, (138)

which gives β = 1/s and ac = −D/2.
For the MN1 case the resulting equation, coming from (131) and (132), is [69, 70]

〈n〉 = J1(〈n〉)
J0(〈n〉) , (139)

where

Jk(y) =
∫ ∞

0
dx xk+2(a−σ)/D−1 exp

(
− 2b

Ds
xs − 2σy

xD

)
. (140)

It can be shown that, for y → 0, [69, 70]

Jk(y) ≈ Ak + Bky
2(a−σ)/D+k + Cky

2(a−σ)/D+k+s , (141)

leading to

〈n〉 ∼ (D/2 − a)max[1/s,D/2σ ] (142)

where max indicates the maximum. This shows that for the MN1 case we have a more
complex critical behavior: a weak-noise regime, where D < 2σ/s and β = 1/s, and a strong-
noise regime, where D > 2σ/s and β = D/2σ . With the asymptotic form (141) one can also
calculate the critical exponents related to higher order moments 〈nk〉 = Jk(〈n〉)/Jk−1(〈n〉).
The strong-noise regime can be further divided into two regimes that are different with
respect to the critical behavior of higher order moments [70].

Critical wetting can be studied with the same kind of procedure, this was done by de los
Santos et al. [71]. In critical wetting, for the MN2 case just one regime is found, with the
critical exponent being independent of the noise strength, while for the MN1 case weak and
strong noise regimes are found. Moreover, with the present mean field approximation, phase
coexistence for the bKPZ− universality class, when the attraction between the substrate and
the interface is strong enough, is observed [32, 72].

We point out that in contrast to the method presented above a simpler approach would be
consider the one-variable case by taking out the Laplacian. The one-variable MN1 equation
was solved exactly in [73], it has a rich scaling behavior, nevertheless it does not display
the strong noise regime. One interesting feature of the one-variable approximation is that
it allows one to clarify essential differences between the MN1 and the DP Langevin equa-
tions [74].

6.2 Scaling Analysis

Given a Langevin equation we can define the partition function Z by summing over all
configurations and realizations of noise that satisfy it. In the case of the MN1 (9) with the
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potential (10) and c = 0 it reads

Z ∝
∫

DnDζP [ζ ]δ
(

∂

∂t
n + an + bns − ∇2n − nζ

)
, (143)

where

P [ζ ] ∝ exp(ζ 2/2D) (144)

and
∫

DnDζ denotes a functional integration. With the introduction of a response field ñ

one can integrate out the noise [75, 76], resulting in the following equation,

Z ∝
∫

DnDñ exp(−S[n, ñ]), (145)

with the action S[n, ñ] given by

S[n, ñ] =
∫

ddx dt

[
D

2
ñ2n2 − ñ

(
∂

∂t
n + an + bnp − ∇2n

)]
, (146)

where, for simplicity, we set σ = 1. Preforming naive power counting in this action we
obtain

[n] + [ñ] = −d and [D] = d − 2, (147)

where [x] represents the dimension of the quantity x in units of length. Therefore, the critical
dimension, above which the noise becomes irrelevant, is dc = 2. It is known that the response
field ñ scales as the survival probability [77]. In the case of the bKPZ− universality class the
survival probability is always one, therefore the dimension of the response field ñ is zero,
giving [n] = d . Power counting at the critical dimension dc = 2 gives

β = 1, ν⊥ = 1/2, ν‖ = 1. (148)

Using standard methods [78] one can perform a perturbative expansion with the action
(146) and then obtain the renormalization group flow diagram for the MN1 equation. The
calculations can be found in [18], in the following we discuss some important points of it.
Since the term proportional to b goes to zero in the moving phase, the bKPZ equation is
equivalent to the KPZ equation in the moving phase, the flow diagram is similar to the well-
known KPZ one [79]: above the critical dimension dc = 2 there is a weak-noise attractive
fixed point, where D = 0, and a strong-noise repulsive fixed point. If the noise strength is
smaller then a certain threshold the flow runs to the weak noise fixed point and the critical
exponents are given by (148) if it is larger the flow runs to infinity and the critical behavior
is not accessible through perturbation theory. Therefore the situation is similar to the one
obtained with the mean field approximation. This was verified with numerical integration of
the MN1 equation for d = 3 in [68].

Another important point about the perturbative expansion is that changing s, the hard-
ness of the wall, does not introduce new divergences and therefore it is not expected to
affect the critical behavior [18]. This is in agreement with numerical results and differ-
ent from the mean field result that predicts an exponent depending on s in the weak noise
regime.

The critical behavior at the critical dimension d = 2 cannot be determined by perturba-
tion theory. This is a very important case because in experimental situations the substrate is



764 A. Cardoso Barato

usually two-dimensional. The critical exponents θ (or β) of the bKPZ universality classes
in two dimensions are not known.

The renormalization group flow equations can be derived in an alternative way without
writing down the action, but direct from the Langevin equation. For the MN1 equation this
can be found in [20] and for the KPZ equation in [10].

7 Final Remarks

Just as the KPZ equation represents a robust universality class of nonequilibrium grow-
ing free interfaces, the bKPZ equation is expected to represent a robust universality class
of nonequilibrium growing interfaces in the presence of wall. While equilibrium wetting
transitions can be studied with the bEW equation, nonequilibrium wetting transitions are
described by the bKPZ equation. Below we point out what we consider the main open prob-
lems in nonequilibrium wetting.

With the introduction of the wall critical exponents arise, just one of them is independent
while the others can be determined from scaling relations and the KPZ scaling exponents.
An important open problem in nonequilibrium wetting is the exact calculation of the ex-
ponent θ for the bKPZ universality classes. While an exact solution for the free interface
case, for a specific microscopic model in the KPZ universality class, is known [64–67] the
bounded case still remains without an exact solution. As we showed here within a mean field
approximation for the SSW model the exponent θ and the one-site probability distributions
for the bKPZ universality classes can be determined analytically but they differ from the
numerical results obtained for the full model.

As pointed out, extensions of the problem that were already considered are long-range
interactions between the substrate and the absorbed particles and the study of the RSOSW
model with diffusion of particles. What was not yet studied is nonequilibrium wetting with
disorder, which can be very relevant in an experimental situation. Also relevant in possi-
ble experimental realizations, is to consider nonequilibrium wetting in a two-dimensional
substrate. The critical exponents of the bKPZ universality class in d = 2 were not yet de-
termined. Performing Monte Carlo simulations with microscopic models or numerical inte-
gration of the Langevin equation at d = 2 is a trivial task, the main problem is to find some
approximative method that can support the results obtained with simulations.

The main challenge, in what we defined here as nonequilibrium wetting, is to observe
experimentally the critical behavior obtained theoretically. Any growing interface in the
presence of a wall and under nonequilibrium conditions is, in principle, a candidate of an
experimental realization of the bKPZ universality classes. Following the discussion in [19]
good candidates may come from crystal growth and synchronization transitions in extended
one-dimensional systems.
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